

CVPR 2015, Citations: 2633

Florian Schroff, Dmitry Kalenichenko, James Philbin

Google Inc.

INTRODUCTION

•Unified system

For face verification, recognition and clustering.

- Method: a deep convolutional network.

 - Learn a Euclidean embedding per image.
 The squared L2 distances in the embedding space directly correspond to face similarity.

UNIFIED EMBEDDING

3.54288220e-02 1.74266189e-01 -7.24426378e-03 1.08134009e-01 -7.20467493e-02 1.52707309e-01 -4.96066455e-03 -2.68189646e-02 -1.03350431e-02 1.15886353e-01 1.80659786e-01 -1.21214485e-03 -1. 49686364e-02 -1. 37237757e-01 -6. 20993786e-03 -1. 06722243e-01 -8.67237672e-02 1.80031687e-01 -3.29912244e-03 -3.18019204e-02 1.81659255e-02 -4.85233814e-02 2.70264223e-02 8.00061598e-02 1.09783344e-01 -1.26300439e-01 2.17632223e-02 -1.27550792e-02 1.20648239e-02 6.38654679e-02 2.14887806e-03 -9.67042744e-02 -3.60493958e-02 5.18226102e-02 1.17877955e-02 -7.27367848e-02 -7. 23751485e-02 -6. 66370317e-02 4. 46268953e-02 3. 92403789e-02 -1.29824923e-02 -1.28949985e-01 -4.10131142e-02 1.03805430e-01 -1.45990163e-01 -2.83476412e-01 2.76148468e-02 1.69149693e-02 -2.18285434e-03 1.20380759e-01 1.94540218e-01 1.44852459e-01 -1.25978395e-01 2.47789267e-02 -4.03356738e-02 2.36927364e-02 9.03213862e-03 -4.88751084e-02 3.66384685e-02 -8.81527141e-02 -1.04331419e-01 -1.10255167e-01 1.23068556e-01 -8.18326324e-02 -3.29800583e-02 -1.18121682e-02 6.51722774e-02 -1.45074978e-01 -1.18661776e-01 1.59136832e-01 -2.16157828e-02 1.08660318e-01 3.27619389e-02 1.04886152e-01 -3.41106616e-02 -1.83374971e-01 1.25901289e-02 -2.66399663e-02 -4.14114036e-02 8.44075233e-02 -5.93594313e-02 -3.17510851e-02 1.08349159e-01 -7.56721536e-04 2.59755123e-02 2.06608307e-02 -2.21327823e-02 -6.66070879e-02 1.60892934e-01 1.17503293e-02 -5.65223545e-02 -1.11236297e-01 -2.54597398e-04 -5.01743369e-02 -3.78362499e-02 -2.15896398e-01 -9.12959501e-02 3.91836390e-02 -1.73303615e-02 -2.86671743e-02 2.65374817e-02 1.32940948e-01 8.75084326e-02 3.27028744e-02 1.03489101e-01 5.73462956e-02 1.04937464e-01 4.32944894e-02 5.78612015e-02 1.71624906e-02 -9.60274599e-04 7.11224005e-02 2.71533523e-02 6.63196295e-02 1.47252542e-03 -8.52344036e-02 1.37573108e-01 4.19461876e-02 1.56400278e-01 2.55480558e-02 6.69547021e-02 -1.08182922e-01 -2.13477835e-02 -9.31352284e-03 7.39142373e-02 -6.70083798e-03 1.81702837e-01 1.35250896e-01]

128 bytes

Same person

Distance = 0.07100 . 150 200 Distance = 0.26 Distance = 1.81 150 -100 150 100 150 200

Different person

Distance = 0.83

250 300

DEEP CONVOLUTIONAL NETWORK

• How previous approaches get embedding?

(1)Train a K people classifier (2)Pick middle layer as embedding vector.

• Drawbacks: indirectness, inefficient...

FACENET APPROACH

 Trains its output to be a compact 128-D embedding using a tripletbased loss function based on LMNN.

LOSS FUNCTION OF LIMIN

$$\mathbf{\varepsilon}(\mathbf{L}) = (1 - \mu) \, \mathbf{\varepsilon}_{pull}(\mathbf{L}) + \mu \, \mathbf{\varepsilon}_{push}(\mathbf{L}).$$

- Pull target neighbors closer together ϵ_{r}

$$\varepsilon_{\text{pull}}(\mathbf{L}) = \sum_{j \rightsquigarrow i} \|\mathbf{L}(\vec{x}_i - \vec{x}_j)\|^2$$

Push differently labeled examples further apart

$$\varepsilon_{\text{push}}(\mathbf{L}) = \sum_{i,j \rightsquigarrow i} \sum_{l} (1 - y_{il}) \left[1 + \|\mathbf{L}(\vec{x}_i - \vec{x}_j)\|^2 - \|\mathbf{L}(\vec{x}_i - \vec{x}_l)\|^2 \right]_+$$

TRIPLET-BASED LOSS FUNCTION

Triplet

- Two matching face thumbnails and a non-matching face thumbnail.
- Thumbnails: tight crop of the face area.

Loss
$$L = \sum_{i=1}^{N} \left[\|f(x_i^a) - f(x_i^p)\|_2^2 - \|f(x_i^a) - f(x_i^n)\|_2^2 + \alpha \right]_+$$

• Aims to separate the positive from the negative by a distance margin.

TRIPLET SELECTION

• Select triplets that violate the triplet constraint $||f(x_i^a)-f(x_i^p)||_2^2 + \alpha < ||f(x_i^a)-f(x_i^n)||_2^2$

Across the whole training set

- Infeasible to compute
- May lead to poor training
- Offline: on a subset of the data
- Online: within a mini-batch

GENERATE TRIPLETS ONLINE

- Sample the training data
 - 40 faces are selected per identity per mini-batch
 - Random sampled negative faces are added to each mini-batch
- Use all anchor-positive pairs in a mini-batch, while still selecting the hard negatives
 - Semi-hard negatives

 $\|f(x_i^a) - f(x_i^p)\|_2^2 < \|f(x_i^a) - f(x_i^n)\|_2^2$

- Large mini-batch, size: 1800
 - Improve convergence during SGD
 - The way of selecting hard relevant triplets

MODEL STRUCTURE

- End-to-end learning
 - Batch input layer, deep CNN, L_2 normalization
 - Followed by the triplet loss during training

12

DATASETS AND EVALUATION

Standard protocol for unrestricted, labeled outside data

- Mean accuracy of 10-folders verification set and the standard error of the mean
- Training
 - 100M 200M face thumbnails
 - 8M different identities

DATASETS AND EVALUATION

- Hold-out Test Set
 - One million images: same distribution as training set, but disjoint identities
 - Five splits of 200k images each
 - VAL and FAR are computes on 100k*100k pairs each split
 - Standard error across the five splits
- Personal Photos
 - 12k images: similar distribution to training set, but manually verified to have clean labels.
 - Compute the VAL and FAR across all 12k squared pairs.
- Academic Datasets
 - LWF (Labeled Faces in the Wild): 13233 images, 5749 people.
 - Youtube Faces DB: 3,425 videos of 1,595 different people.

EXPERIMENTS

- Computation Accuracy Trade-off
- Effect of CNN Model
- Sensitivity to Image Quality
- Embedding Dimensionality
- Amount of Training Data

an overview of *all* failure cases

ILLUMINATION AND POSE INVARIANCE

• A threshold of 1.1 would classify every pair correctly.

FACE CLUSTERING

All these images in the users personal photo collection were clustered together.

an exemplar cluster for one user.

SUMMARY

- Provide a method to directly learn an embedding into an Euclidean space for face verification
 - sets it apart from other methods (e.g. DeepFace / DeepId2+)
 - use the CNN bottleneck layer
 - require additional post-processing
- End-to-end training both simplifies the setup and shows that directly
 optimizing a loss relevant to the task at hand improves performance.
- Only requires minimal alignment (tight crop around the face area).
 - DeepFace: performs a complex 3D alignment

LIMITATIONS

Reduce model size and CPU requirements.

- Improve currently extremely long training times (1000-2000h)
 - Smaller batch size
 - Offline as well as online positive and negative mining
- Not have a side-by-side comparison of hard anchor-positive pairs versus all anchor-positive pairs.

Not directly compare to other losses.

HARMONIC EMBEDDING

Compatibility:

- a set of embeddings generated by different models v1 and v2 can be compared to each other.
- greatly simplifies upgrade paths

THANK YOU

NETWORK ARCHITECTURES

140M 1.6B

total

layer	size-in	size-out	kernel	param	FLPS	type	output	donth	#1~1	#3×3	$\mu_{2} \vee_{2}$	$\#5 \times 5$	#5~5	pool	narame	FLOPS
conv1	220×220×3	$110 \times 110 \times 64$	$7 \times 7 \times 3, 2$	9K	115M	type	size	ueptii	#1/1	reduce	#3/3	reduce	#3×3	proj (p)	params	FLOFS
pool1	$110{\times}110{\times}64$	$55 \times 55 \times 64$	$3 \times 3 \times 64, 2$	0		$\operatorname{conv1}(7 \times 7 \times 3, 2)$	$112 \times 112 \times 64$	1							9K	119M
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0		max pool + norm	$56 \times 56 \times 64$	0						$m 3 \times 3, 2$		
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K	13M	inception (2)	$56 \times 56 \times 192$	2		64	192				115K	360M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3 \times 3 \times 64, 1$	111K	335M	norm + max pool	$28 \times 28 \times 192$	0						$m 3 \times 3, 2$		
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0		inception (3a)	$28 \times 28 \times 256$	2	64	96	128	16	32	m, 32p	164K	128M
pool2	$55 \times 55 \times 192$	$28 \times 28 \times 192$	$3 \times 3 \times 192, 2$	0	202.6	inception (3b)	$28 \times 28 \times 320$	2	64	96	128	32	64	L ₂ , 64p	228K	179M
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K	29M	inception (3c)	$14 \times 14 \times 640$	2	0	128	256,2	32	64,2	m 3×3,2	398K	108M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$ $14 \times 14 \times 284$	$3 \times 3 \times 192, 1$	004K	521M	inception (4a)	$14 \times 14 \times 640$	2	256	96	192	32	64	L ₂ , 128p	545K	107M
20015 2002/12	$14 \times 14 \times 384$	$14 \times 14 \times 364$ $14 \times 14 \times 384$	$3 \times 3 \times 304, 2$ $1 \times 1 \times 384, 1$	148K	20M	inception (4b)	$14 \times 14 \times 640$	2	224	112	224	32	64	$L_2, 128p$	595K	117M
conv4	$14 \times 14 \times 384$ $14 \times 14 \times 384$	$14 \times 14 \times 256$	$3 \times 3 \times 384$ 1	885K	173M	inception (4c)	$14 \times 14 \times 640$	2	192	128	256	32	64	$L_2, 128p$	654K	128M
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256.1$	66K	13M	inception (4d)	$14 \times 14 \times 640$	2	160	144	288	32	64	L ₂ , 128p	722K	142M
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M	inception (4e)	7×7×1024	2	0	160	256,2	64	128,2	m 3×3,2	717K	56M
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M	inception (5a)	7×7×1024	2	384	192	384	48	128	L ₂ , 128p	1.6M	78M
conv6	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116M	inception (5b)	7×7×1024	2	384	192	384	48	128	m, 128p	1.6M	78M
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0		avg pool	$1 \times 1 \times 1024$	0								
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0		fully conn	$1 \times 1 \times 128$	1							131K	0.1M
fc1	$7 \times 7 \times 256$	$1 \times 32 \times 128$	maxout p=2	103M	103M	L2 normalization	$1 \times 1 \times 128$	0								
tc2	$1 \times 32 \times 128$	$1 \times 32 \times 128$	maxout p=2	34M	34M	total									7.5M	1.6B
10/128	$1 \times 32 \times 128$ $1 \times 1 \times 199$	$1 \times 1 \times 128$ $1 \times 1 \times 129$		524K	0.5M	10ttli									110111	11015

○ v7 template

Figure 9. Learning the Harmonic Embedding. In order to learn a *harmonic* embedding, we generate triplets that mix the v1 embeddings with the v2 embeddings that are being trained. The semihard negatives are selected from the whole set of both v1 and v2 embeddings.