Contents

Evaluating Explanation Without Ground Truth in Interpretable Machine Learning

arXiv’19, cite:24, PDF link: https://arxiv.org/pdf/1907.06831.pdf

F Yang, Texas A&M University(美国,得州农工大学)

Interpretable Machine Learning (IML)

  • Aiming to help humans understand the machine learning decisions.
  • IML model is capable of providing specific reasons for particular machine decisions, while ML model may simply provide the prediction results with probability scores.
image-20211101135321417
Core Idea of IML

A two-dimensional categorization

  • Scope dimension
    • global: the overall working mechanism of models -> interpret structures or parameters
    • local: the particular model behavior for individual instance -> analyze specific decisions
  • Manner dimension
    • intrinsic: achieved by self-interpretable models
    • post-hoc (also written as posthoc): requires another independent interpretation model or technique

Contents

上半年在实习没有更博,做了与手机指纹认证相关的项目,由于项目需要阅读了 AOSP 相应部分的源码,在这篇博文里做一个系统化的整理~

安卓生物识别架构

image-20210915222935702

Android Q(10) 开始引入了 BiometricManager,本文基于这一架构,结合最新的 AOSP 源码介绍安卓的指纹识别架构,侧重与发起指纹认证相关的方法(非其它生物认证方式或录入流程)。

Android Code Search: https://cs.android.com/


BiometricManager

frameworks/base/core/java/android/hardware/biometrics/BiometricManager.java

/**
 * A class that contains biometric utilities. For authentication, see {@link BiometricPrompt}.
 */
  • static final 成员变量:定义在 BiometricConstants 类中的 SUCCESS, ERROR_HW_UNAVAILABLE, ERROR_NONE_ENROLLED, NO_HARDWARE

  • 构造函数:传入 Context, IAuthService (Communication channel from BiometricPrompt and BiometricManager to AuthService)

    AuthService: System service that provides an interface for authenticating with biometrics and PIN/pattern/password to BiometricPrompt and lock screen.

    在系统层,根据认证类型注册相应的服务(FingerprintService, FaceService, IrisService),做检查权限等

  • 接口 Authenticators:认证类型的结合(e.g. DEVICE_CREDENTIAL | BIOMETRIC_WEAK),包含生物认证的强度(STRONG, WEAK),用于设备保护的非生物认证方式(DEVICE_CREDENTIAL: PIN, pattern, password)

  • canAuthenticate, hasEnrolledBiometrics 方法:检查设备是否支持生物识别身份验证,是否有录入的生物特征,以及相应的权限检查

Contents

论文 DeepReflect: Discovering Malicious Functionality through Binary ReconstructionUSENIX Security ‘21 (Fall) 录用,来自佐治亚理工的 Wenke Lee 团队:

image-20210908202030535

源码地址:https://github.com/evandowning/deepreflect

Motivation:恶意应用分析师的故事

Molly 是一名恶意应用分析师,她每天的主要任务就是理解恶意样本并给出技术报告。当拿到一个恶意样本时,Molly 有着一套如 图1 所示的工作流程,她首先将样本上传到 VirusTotal 等平台扫描,如果是一个已被恶意样本库收录的应用,她就可以轻松地结束本次工作。但这样的好事并不多见,因为待分析的往往是公司恶检系统的漏网之鱼。接着,她选择使用定制的沙箱来运行样本,以动态分析应用的恶意行为,但狡猾的样本采用了沙箱逃逸技术(检测到沙箱环境时则不执行部分代码)。于是,她又使用了一些内部工具,企图哄骗应用去执行隐藏的行为,却都无济于事。无奈之下,她只能将应用解包(脱壳)后做静态分析。

image-20210908193718487
图1 恶意应用分析师的工作流程